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MULTIHOMOGENEOUS NEWTON METHODS 

JEAN-PIERRE DEDIEU AND MIKE SHUB 

ABSTRACT. We study multihomogeneous analytic functions and a multiho- 
mogeneous Newton's method for finding their zeros. We give a convergence 
result for this iteration and we study two examples: the evaluation map and 
the generalized eigenvalue problem. 

1. INTRODUCTION AND MAIN RESULTS 

1.1. Introduction. In a series of papers, Shub [8] and Shub and Smale [9], [10], 
[11], [12], [13], studied a projective version of Newton's method for homogeneous 
systems. Their particular focus was the problem of finding zeros of systems of 
n homogeneous polynomial equations in n + 1 unknowns. In this paper we study 
multihomogeneous functions and a multihomogeneous Newton's method for finding 
their zeros. 

Here are three examples of multihomogeneous functions. Let NHd be the space of 
homogeneous polynomials of degree d defined on C?. Let (d) = (di, X . , dm) and 
N(d) = HiHdi * So elements of al(d) represent polynomial functions f: C? - Cm, 
where f = (fl,... , fin) and fi is homogeneous of degree di. The evaluation map 

ev: a(d) X n- Cm, 

ev(f, x) = f(x), is multihomogeneous. Each coordinate function of ev is linear in 
f and homogeneous of degree di in x. 

A second example is given by the generalized eigenvalue problem. Let A, B 
?n e Cn be linear operators. Then 

F(A,B): ?2 X Cn _ en, F(A B) (aj, ,x) = (aB - OA)(x), 

is bilinear, i.e. it is linear in (a,O/) and linear in x. The generalized eigenvalue 
problem is to find the zeros of F(A,B)- 

A third example is given by homogenization. If f: E -I F is complex analytic 
then 

f: Ex ?* ) F, f (x,t) =f (x/t), 

is complex analytic and homogeneous of degree 0. 
In general let E1,... ,Ek be complex or real vector spaces and F = em or 

Rm. Let E = E1 x ... x Ek and ((d)) = ((di),... , (dk)), (d2) = (dli,.. ,dki) for 
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i = 1,... ,m. Then f: E -+ F is multihomogeneous of degree ((d)) if and only if 
the i-th coordinate function satisfies 

k 

fi(Alxl,... ,AkXk) = lJ Adjfi(xl,... , Xk) 

j=l 

for (xi,... , Xk) E E and (A1,... , Ak) a k-tuple of scalars, i.e., (A1,... , Ak,) E G = 

Ck or Rk as the case may be. 
We assume throughout that f is analytic. The domain of f may be an open 

subset of E, but with abuse of notation we continue to write f: E -> F. 
The multihomogeneous projective Newton iteration we define below is defined 

on E but is invariant under the natural identifications which define the product of 
the projective spaces IP(E1) x ... x IP(Ek). Indeed this is much of our motivation 
in defining Newton's iteration as we do, but it is important to keep in mind that 
implementations of the method reside in E itself ! 

For the rest of this paper we will assume that E, F and G are complex and finite 
dimensional vector spaces and that Ei has an Hermitian product ( , )i. For the 
case where E, F and G are real we would replace the Hermitian product by an inner 
product. Also, we denote 

E* = (El \ {O}) x ... x (Ek \ {O})- 

If A = (A1, ... , Ak) E G, we define 

xA: E -E 

by 

xAx = (Alxl,... ,AkXk)- 

Then IP(E1) x ... x P(Ek) is the quotient of E* by the action of G* = (C \ {O}) x 
... x (C \ {O}) (k times). For x E E*, x = (xl,... , Xk), we let xi' be the Hermitian 
complement of xi in Ei, 

k 

X' = fl4x' C E and Vx = (x) c E. 
i=l1 

Notice that Vx is also the subspace of E spanned by the vectors (O,... , xi,. . ., O), 
i = 1, ... , k. The dimension of Vx is k since x E E*. For each i, x-l is a natural rep- 
resentative of the tangent space TxIP(Ei), and hence xl is a natural representative 
of the tangent space 

k \ k 

TX k P(Ei) = fJTx, (P(Ei)). 

If x = xAy for A E G* and v E y', then xAv E xl represents the same tangent 
vector in Tx (H P(EiE)). 

We now define an Hermitian structure on E depending on x and hence on xl by 

( E (vi wi), 

for x E E*, v and w E E. If A E G*, then xA maps xl onto (xAx)' and 

(*) ( x Av, xAw)(x#\x) = (v,w)x, 
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so (, )x defines an Hermitian product on T,(IP(E1) x ... x IP(Ek)). Condition (*) 
says that xA is an isometry from xl to (xAx)' as well as E to E with their given 
Hermitian products. 

We are now ready to define the multihomogeneous projective Newton iteration 
for f. We denote this map as Nf: Hli P(Ei) - 

Definition 1. 

Nf (x) = f(x) - (Df(x)Ixi )tf(x). 

Here (Df(x)KI )t is the Moore-Penrose inverse of the restriction of Df(x) to 
xl. We recall that if A: V1 -) V2 is a linear map between two finite dimensional 
complex vector spaces with Hermitian products, then the Moore-Penrose inverse of 
A maps V2 to VI and is the composition of two maps 

At: V2 -+Vi I At =irl, 

where H is the Hermitian projection of V2 onto imA and i : imA -+ Vi is the 
right inverse of A whose image in V1 is the Hermitian complement of kerA. If A is 
surjective then At = A*(AA*)-1, where A* is the adjoint of A. In this paper we 
only take Moore-Penrose inverses of surjective linear maps, unless otherwise noted. 

Nf is of course naturally defined on E; we use Nf to denote this map as well. 
FRom the context it should be clear which map we mean and whether we mean 
Newton's iteration, projective Newton's iteration or multihomogeneous projective 
Newton's iteration. 

Proposition 1. Nf is well-defined, i.e., if y = xAx for x E E* and A Ez G*, then 
Nf (y) = x ANf (x). 

For the proof we use a lemma which will be useful later. Let A = (A1,... ,Ak)i 

where Ai = H> A"Z and f has degree ((d)). Then 

Lemma 1. 1. f (x Ax) = x Af (x). 
2. Df (x Ax) x A = x ADf (x). 
3. D'f(xAx)(xA,..., xA) = xAD'f(x). 
4. (xA)-l(Df(xAx)l(x,\x)w )t = (Df(x)lxK)t(xA)-l. 

Proof of Lemma 1. 1 is the definition of multihomogeneity. 2 and 3 then follow from 
the chain rule. 4 follows from 2 since (x A) is an isometry which maps ker Df(x) 
to kerDf(xAx) and hence im(Df(x)lx )t to im(Df(xAx)l(xX)I)t E 

Proof of Proposition 1. We have 

(Df(xAx)l(xAx)w )tf(xAx) = (xA)(Df(x)lx))t(xA)-l(xA)f(x) 
= (xA)(Df(x)KIx)tf(x) 

by 4 and 1 of Lemma 1. 0 

Our analysis of the multihomogeneous Newton.method closely follows Smale [14]. 
There are three important quantities associated to f and x, which we now define. 

Definition 2. 1. -y(f,x) = max(l,suPk>2 1/(Df(x) x )tDkf(X)Ik! 
1 

/(k) 

2. 3(f, x) = II(Df(x)ixi )tf (x)Dl)x) / 
3. a(f,x) = /3(f,x)y(f,x). 
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In the definition of -y(f,x), 11 llx is the operator norm with respect to (,x 
We now verify that a(f, x), i3(f, x) and -y(f, x) are defined on IP(Ej) x .. . X P(Ek). 

Proposition 2. For any x E E* and A E G* we have *(f, x) = *(f, xAx) with 
* E {a,13vy}. 

Proof of Proposition 2. By Lemma 1 

(xA)(Df(x)KxI)tf(x) = (Df(xAx)I(x,x)w )tf(xAx) 

as in Proposition 1, and 

(Df(x)lxK )tDkf(x) = (xA)-l(Df(xAx)I(xAx) )tDkf(xAx)(xA, ... , xA). 

Since xA is an isometry, we obtain the required result. 0 

We recall that for i = 1,.. , k the Riemannian distance in IP(Ei) is given by 

dR(Xi,yi) =arccos Ie HY 

and in P(E1) x ... x P(Ek) by 

k X1/2 

dR(x,y) = ( dR(Xii) )2 

where x = (x1, ... ,Xk) and y = (y, ... .,Yk) E E*. Here and throughout we identify 
xi E Ei \ {O} and x E E* with their equivalence classes in IP(Ei) and IP(Ej) x ... x 
IP(Ek) respectively. 

Our main theorems concerning the convergence of the multihomogeneous Newton 
iteration are summarized in the following subsections and proved in ?2. 

1.2. a-theorem. 

Theorem 1. There is a universal constant a,, > 0 with the following property: 
for any multihomogeneous system f: E -+ F and x E E*, if a(f, x) < cau and 
Df(x)Kxw (the restriction of Df (x) to xl) is onto, then the multihomogeneous 
Newton sequence 

XO = X, Xk+1 = Xk - (Df(xk)Ix I)tf(Xk) 

satisfies 

2 k _ 1 

flXk+1 -XkH|xk < ()2) (f,x) 

for any k > 0. This sequence converges to a zero ( E E* of f, and 

2 k _ 1 

dR((i Xk) < a (2 /3(f,x) 

with 

or= E 
()1= 1.6328... 

We can take acu = 1/137. 
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a-theorems are available in several different contexts. This approach of Newton's 
methods finds its origins in a paper by S. Smale [12] for analytic functions f: E -I F 
with E and F Banach spaces. Sharpened results are given by Royden [7], Shub- 
Smale (9] and Wang [16]. 

Newton's method can be generalized to search for zeros of maps f: RI 
Rmi n > m, using the Moore-Penrose inverse of the derivative: Nfp (x) = x - 

Df(x)tf(x). This method appears in the book of Allgower and Georg [1]. An 
a-theorem is given in this context by Shub and Smale in (12]. 

Projective Newton's method has been proposed by Shub in [8] for homogeneous 
systems f Cn+l n- C' and is defined by Nf (x) = x - Df(x)lIjf(x). An a- 
theorem has been given by Malajovich in [6]. In the same paper this author also 
studies Moore-Penrose projective Newton's iteration Nj'pp(x) = x - Df(x)tf(x) 
for such homogeneous systems. 

1.3. -y-theorem. 

Theorem 2. There are universal constants -u and cu > 0 with the following prop- 
erties: Let E e E* be a zero of f with Df (C) onto and x E E*. If 

lix - (iKA(f, () < Yu 

then the multihomogeneous Newton sequence converges to a zero E' e E* of f, and 

12 k _ 1 

dR((, ,Xk) < a -2 13(f, x). (12 1 

Moreover 

dR((, X) < 311x - (11( 

and 

dR((', Nf(X)) < cu_y(f, ()Ilx -112 

We have not tried to find the largest possible values for au or -Iu. The proof of 
Theorem 2 crudely shows that we can take -yu = .00005. 

Corollary 1. There is a universal constant Ju with the following property: Let 
E E E* be a zero of f with Df(() onto and x E E*. If 

dR (X, C) -(f, C) 5 Ju 

then the multihomogeneous Newton sequence converges to a zero C EE* of f, and 

(2) dR<(,Xk+l) ? (12 dR(X) 

This theorem gives the size of the attractiQn basin around a given zero of the 
system f. The affine case is treated by Shub-Smale in [9] and in [12] for overdeter- 
mined systems and Moore-Penrose Newton's iteration. For homogeneous systems 
f : Cn+l - Cn see Blum-Cucker-Shub-Smale [2], Chapter 14, Theorem 1. The 
-y-theorem is the main ingredient to prove complexity results for path-following 
methods. It will be used in the other sections. 
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1.4. Newton's method for the evaluation map. Let NHd be the space of 
homogeneous polynomials of degree d defined on Cn, n > 1. Let (d) = (d, , dm) 
and N(d) = Hm1 NHdi. The evaluation map 

ev :(d) X Cn ? m, 

ev(f, x) = f (x), is bihomogeneous: each coordinate function ev(fi, x) is linear in fi 
and homogeneous of degree di in x. 

The Hermitian structure over N(d) is the product structure: for f = (fl,... X fm) 
and g = (g1, gm) we define 

m 

(Y, g) =E(fix 9 i) 
i=l1 

and 

(fi, g=) ai,Sbi,) 
loil=di 

with fi(z) = EIl=d, ai,oz X gi(z) = Za=d, X = (,,... aln), la = a, + 

...+ aXn and d)= !.. 

Let us denote 

v = {(g, Y) E (d) X C : ev(g,y) = O}. 

For any (f, x) E N(d) close enough to V, multihomogeneous Newton's method 
constructs a sequence N, (f, x) which converges quadratically to a unique element 
in V denoted by Mev (f, x). This defines a function which projects a neighborhood 
of V onto V itself. By Theorem 2, the size of this neighborhood is controlled by 

-y(ev, V) = max -y(ev, g, y). 
(g,y)EV 

We have obtained the following estimate 

Theorem 3. -y(ev, V) < 2 )(1-( + V/) with D = maxdi. 

The properties of Mev (f, x) are summarized in the following theorem. 

Theorem 4. Let (f, x) E NH(d) X Cn be such that 

dR((f, x); V) < D 1 + 

Let (g, y) E V satisfy dR (f, X); V) = dR((f, x); (g, y)). Then the multihomogeneous 
Newton's sequence N4Vt)(f,x) converges to Mev(f, x) E V. Moreover 

dRR (Mev (f x X); (f x X)) < 3 ( 1 gj12 + lX12 1/2 

and 

(1)2k (11f 9I2 ? v 2 1/2 
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1.5. Path-following. In the following theorem we analyse the complexity of a 
path-following method to solve a system of equations approximately. The context 
we deal with is the following: for any t E [0, 1] let ft: E -* F be a multihomogeneous 
system depending smoothly on t. We also suppose that dim F = dim xl for x E E*; 
that is, after disregarding the homogenizing directions, the number of equations 
and the number of unknowns are the same. Let (t be a smooth curve in E* such 
that ft((t) = 0 and Dft((t)l~t is an isomorphism. We associate to a subdivision 
0 = to < t1 < ... < tp = 1 a sequence xi defined by 

xo = (o and xi+1 = Nft,+, (xi). 

When the subdivision size max ti+1 - ti is small enough, then 

dR(Xi, (ti )-(fti X (ti ) < Jul 

so that, by Theorem 2, xi may be taken as the starting point for a multihomoge- 
neous Newton sequence N4k (xi) converging quadratically towards (t,. 

The complexity of this path-following method is given by p, the number of points 
in the subdivision. Before we state our result we have to introduce more invariants: 

Definition 3. 

my = max y(ft, Xt), 

A= max IlDft((t)tli, 0<t<1 

and L is the length of the curve t E [0,1] -* ft. 

[u is the condition number of the curve t E [0,1] -* (ft, (t). Our main result 
asserts that the complexity of this path-following method depends mainly on the 
product ,t-yL. 

Theorem 5. There is a partztion 0 = to < t1 < ... < tp = 1 with 

such that, for each i = O ... p the sequence defined by 

xO = (o and xi+, = Nft,+, (xi) 

satzsfies 

dR (Xi, OJi )Y(fti, (ti ) <_ Ju- 

Remark. Theorem 5 states the existence of a partition without giving a hint as to 
how to construct one. For practical implementations a good strategy may consist 
in taking ti+1 = ti + A(ti - ti1). In the first step take A = 2, i.e., double the 
step length. If the corresponding iterate xi+1 is not an approximate zero for fi+i, 
change A in A/2 and compute a new xi+1. 

There is a considerable literature concerning path-following methods. The book 
of Allgower and Georg [1] is a good introduction to this subject. We follow here the 
lines of Shub and Smale: [9] for the affine case, [12] for the affine underdetermined 
case. The case of sparse polynomial systems is studied by Dedieu in [4]. 
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1.6. Newton's method for the generalized eigenvalue problem. Let (A, B) 
E Mn(C) x Mn(C) be a matrix pair. A pair is called singular when the homoge- 
neous polynomial P(A, B) (&, f3) = det(f3A - aB) is identically 0. Otherwise it is said 
to be regular. In such a case this polynomial has degree n and its zeros consist in 
n lines through the origin. These lines are the eigenvalues of the pair (A, B), and 
the nontrivial solutions x E Cn of the equation 

(f3A-aB)x = 0 

are the corresponding eigenvectors. 
In order to compute approximately the eigenvalues and eigenvectors of this ma- 

trix pair we introduce 

F(A,B) : 2 X Cn _ Cn F(A, B)(a,f, X) = (/3A -aB)x, 

which is a bihomogeneous polynomial with degree 1 in each variable. Multihomo- 
geneous Newton's iterate is thus equal to 

NF(A,B) (a,) , X) = (&,f3,x) - DF(A,B) (ac ,X)tI (R)3 X)1 (/3A - aB)x. 

A more precise description of this iterate is given in Section 2.6. 
Our objective is here to describe the complexity of a path-following method to 

compute approximately an eigenpair (i.e. an eigenvalue, eigenvector pair) associ- 
ated with a matrix pair. Let (Ao, BO) and (A1, B1) be two regular matrix pairs. 
We consider two smooth curves 

t E [0, 1] -* (1 - t)(Ao, Bo) + t(Al, B1) = (At, Bt) 

and 

t E [0, 1] -* (at,3tt, xt) E c2 x cn 

so that 

(,3tAt - atBt)xt = 0. 

We also suppose that (at, f3t) is a simple eigenvalue for the pair (At, Bt). The path- 
following method consists in the following: 

?=to <tl < ... <tp=1 

is a given subdivision and 

(ao, bo, zo) = (&o,fio, xo), 

(ai+i, bi+i ,zi+i) = Ni+i(ai, bi, zi), i = 0, . . . ,p- 1. 

Here Ni is the multihomogeneous Newton's iterate associated with the matrix pair 
(At,, Bt) . Starting from the eigenpair (ao,,fio,xo) of (AO, Bo), we obtain an ap- 
proximate eigenpair (ap, bp, zp) for (A1, B1). Here, approximate means 

a(F(A, ,B1 ), (ap, bp, zp)) < au, 

so that, by Theorem 1, the sequence Nk (ap, bp, zp)), k > 1, converges quadratically 
to (01,0i1,xi). 

Our main theorem in this section gives a bound for a sufficient p in terms of the 
condition number of the path. This last quantity is defined by 
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Definition 4. 

A = mta<x A(At I Bt,I at ,3pt IXt), 

with 

,a(A, B, , ,3, x) = 1DF(A,B) (a, 3, X) I(c d,,X)1 1 (ca,i3x)d 

,ui(A, B, , ,3, x) is the condition number for the generalized eigenvalue problem 
and [u the condition number for the path. 

Theorem 6. There is a partition 0 = to < t1 < ... < tp = 1 with 

p = Fqd max(r, s)], 

r = 2,u (lAo - A112j + IJBo -B112 1/2 

s = A2 max ((jjAoj12 + jlBo112)1/2, (IIA, 112 + B1 12)1/2) 

x (IlAo - A112 + IIBo -B12)12 

such that (ap, bp, zp) is an approximate eigenpair for (A1, B1). 

Here jAjj is the spectral norm and IIAIIF the FRobenius norm. 

Remark. Such a path-following method might be combined with a "divide and 
conquer" strategy as in Li [5]: 

(oA11 0 (lAl1 A12 
0 A22) A1= (A21 A22)' 

and similarly for BO and B1. See, also, Li's discussion of the number of solutions of 
(fA - aB)x = 0 considered as a quadratic or a bihomogeneous system of equations. 
The bihomogeneous context seems more natural. 

The remainder of this paper is organized as follow: in Section 2.1 we give some 
results about the angle between two subspaces in a Euclidean or Hermitian space. 
These results will be useful later. We present them in a separate section to make 
reading easier. In Section 2.i, 2 < i < 6, we give the proofs of the theorems 
presented in Section l.i. 

2. PROOFS OF THEOREMS 

2.1. Angles between subspaces in a Hermitian space. We denote by E 
a complex Hermitian space or a real Euclidean space. To measure the distance 
between two vector subspaces V and W in E it is useful to consider the following 
quantity: 

Definition 5. 

d(V, W) = max min lmv-w 
vEV* wEW llvll 

This number is the maximum of the sine of a given vector v E V with its 
orthogonal projection on W. It also has the following characterizations (Hx denotes 
the orthogonal projection on X): 
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Proposition 3. 1. d(V, W) flwH flv 
2. d(V, W) = d(W', V'). 
3. d(V, W) = d(V (VnW)',Wn(VnW)). 

Proof. 1 goes as follows: 

d(V,W) = max 11(id-IHw)vj = max 1IIHw1v v=l max 1IHw,Ilvvll = llw,iHv I. 
j1vf=1 1v?1 I<1 

2 is a consequence of 1 since the norms of an operator and its transpose are equal. 
Let us prove the third assertion. For any v E V we write it as 

v=v1 +V2 E (vnw) D(vn(vnw)'). 

Then 

IHWV = W1 + W2 E (V n W) ?D (W n (v n w)) 

with w, = v, and w2 = Hwn(vnw)I (V2) . 

The proof of Proposition 3.1 may be found in Stewart-Sun [15] with other useful 
properties of d(V, W). This number measures the distance of V from W, but is not 
stricto sensu a distance because in general d(V, W) and d(W, V) are not equal. For 
this reason it is convenient to define 

J(V, W) = max(d(V, W), d(W, V)). 

6 is a (true) distance in the set of vector subspaces in E. We also have 

Proposition 4. 1. 0 < d(V, W) < 1. 
2. d(V, W) = O if and only if V c W. 
3. d(V, W) < 1 if and only if V n w' = {o}. 
4. d(Vi, V3) < d(Vi, V2) + d(V2, V3). 
5. If V1 C V2, then d(V1,W) < d(V2,W), and if W, C W2, then d(V,W2) < 

d(V, W1). 
6. d(V, W1 + W2) < min(d(V, WI), d(V, W2)). 
7. If V1 and V2 are orthogonal, then d(V1 D V2, W) < d(V1, W) + d(V2, W) and 

d(V1 + V2, W) < x/2max(d(Vi, W), d(V2, W)). 
8. If dim V = dim W, then d(V, W) = d(W, V). 

These properties (more precisely, 2, 4 and 8) show that d(V, W) defines a dis- 
tance (sticto sensu) on the Grassmannian manifold Gn,p of p-dimensional vector 
subspaces in Cn. When dim V $4 dim W then, by 3, J(V, W) = 1, while, when 
dim V = dim W, d(V, W) = d(W, V) = J(V, W). In the sequel we only use d(V, W). 

Proof. 1 to 7.1 are staightforward. We now prove 7.2. If v1 and V2 are orthogonal 
then 1v 1? + v2 V ? < vI + v2 1 So, if V1 and V2 are orthogonal, 

d(V1 V2,W) = IlHwI(vl +V2)H| < IlHwIvlII + 1lHwIv22 

< d(V1, W) Ilvi 11 + d(V2, W) HJv2 11 

< max(d(Vi , W),d(V24 W))(jlvj11 + 1V2 11) 

< V2 max(d(V1, W), d(V2, W))||vi + V2 11 

To prove 8 we first remark that d(V, W) is the largest singular value of Hlw iv = 

(id - lw)fv = flv - fwfv, and similarly d(W, V) is the largest singular value 
of Hw - HVHW. Let us introduce a unitary transformation Q such that Q2 = id 
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and QV = W. The existence of such an involution will be proved at the end of this 
section. We have Hw = QHVQ, so that 

HwIH v = Hv - HlwHlv = Hlv - QHlvQHlv 

and similarly 

HvH Ilw = Q(Iv - QIHvQIHv)Q. 

Thus Hlw?Hv and Hv IHw have the same singular values and d(V, W) = d(W, V). 

Appendix to Section 2.1. Let V and W be two vector subspaces in E with 
the same dimension n. The proof of Proposition 4.8 requires the existence of an 
involution Q in E which sends V onto W. The existence of such an involution 
may be well known, but we have not found it in the literature. A proof of the fact 
may be derived from the CS decomposition for partitionned unitary matrices, see 
Stewart-Sun [15]. We give here a concise and elegant construction due to A. J. 
Hoffman. 

We only consider the case E = C2n, V n w = {o} and V ?3 W = C2n. The 
general case is easily deduced from this one. We also suppose that V is spanned 
by the first n vectors of the canonical basis in C2n. Let us introduce two 2n x n 
matrices: 

s= (') and T A 

such that the columns of T span W and T is orthonormal. Notice that S spans V. 
Let us write AU = H, the polar decomposition of A: U is unitary and H positive 

semidefinite; TU = (*) also spans W. We remark now that B* is nonsingular: 

if B*x = 0 then TUx= (Ix), so that TUx E V n W = {o}. This gives x = O, 

since U is unitary and T orthonormal. B is also nonsingular. Let us now consider 
the following 2n x 2n matrix: 

Q (B* -B- HB) 

We have 

H2 + BB* = (H B ) = U*T*TU = In, 

so that 

HBB* = H(In - H2) = (In - H2)H = BB*H. 

This yields B-1HB = B*HB-*, and consequently Q is Hermitian. Using the same 
argument, we see easily that Q2 = I2n, so that Q is an involution. To complete the 

proof we remark that QS = = TU spans W. C 
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2.2. a-theorem. In this section we give a proof of Theorem 1. It is split into 
fourteen different lemmas. We first recall some notations and introduce some new 
ones. We let xl be the Hermitian complement of xi in E?, 

k 

xl =fJx C and V =(x') C E. 
i=l1 

We also introduce 

= im(Df(x) x )t and W? = + (kerDf(x) n x'), 

where the + is orthogonal. We also use frequently for x, ( E E* and y Ez1 E 

UX= Ily-x1x'Y(f,x), u~ = Iy - (lIky(f,() 

and the function 

- (u) = 2u 2-4u+1, O<u?< 1 - 2. 
2' 

This function is decreasing from 1 at u = 0 to 0 at u = 1 - x/2/2. We first start 
with a linear algebra lemma. 

Lemma 2.a. Let X and Y be Hermitian spaces and A, B: X -* Y linear operators 
with B onto. If 

11Bt(B -A)11 < A< 1 

then A is onto and 

IAtBII < 1 - A 

Proof. Let us denote C = B - A. We have jlBtCjj < A < 1, so that idx - BtC is 
nonsingular and 

11(idx - BtC)-lI1 < 1 A 

by a classical argument. Because B is onto we have BBt = idy, so that 

(B-C)tB(idx-BtC) = (B-C)t(B-C) = 11 

with 11 the orthogonal projection on (ker A)'. Thus 

jIAtBij = 1(B - C)tBI1 = liH(idx - BtC)- l] < 11111 11(idx - BtC)- 1 A< 

Moreover, 

A = B-C = B-BBtC = B(idx-BtC) 

is the composition of B onto, and (idx - BtC) nonsingular. Thus A is onto and 
we are done. OL 

Lemma 2.b. Let x E E* and y E E be given such that Df(x) Ix is onto and 

uX < 1- v. Then Df(y)Ixi is onto and 

I(Df(y)Ilx)tDf(x)Ix llx < (u)2 
- P(uX) 
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Proof. We have 

Df (y) = Df (x) + Z k D f (X) (y-x)k- 

k>2 

so that 

(Df(x)lxi)t(Df(y)I.i - Df(x)I ) = Yk(Df(x)xI )1 Di f (X) (y-x)t- l. k! (y-xkI. 
k>2 

If we take the operator norm of both sides, we get 

I(Df (x)lxi )t(Df(y)lx -Df(x)lxi )jjx < ? k-(f, X)k-l Ily -Xll-1 
k>2 

U,kk-1 

k>2 

and this number is < 1 since ux < 1 - ?/. By Lemma 2.a Df(y)Ix is onto, and 

11 (Df (y) Ix tDf (x) xu, lix < ( - ( 
)2 

Lemma 3.a. We have f(() = 0 if and only if V( C ker Df(4). In this case 

W = ker Df(() = V (ker Df (() n 

and 

W = in(Df t = imDf(()t. 

Proof. Since fi: E -* C is multihomogeneous with degrees d1j,... , dki, then (Euler 
formula) 

k 

Dfi (x) (x Ax) = fi (x) Z djiAj, 
j=1 

and this proves the first assertion. Since W~ = im(Df(()I t) is the orthogonal 
complement in ii of kerDf(()I 1, we have 

w= n ((' n kerDf(())' = n (VE + kerDf(()'), 
so that 

w = v + ((-'n ker Df(()). 

Since V( C kerDf((), this gives 

W = kerDf(() and W = kerDf(()L = imDf(()t. 

Lemma 3.b. Iff() =0 and u, < 1- , then 

d,(kerDf(y) nyl, kerDf(() nI) < +1 U4 - (1 - u~)2 
I ~ 
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Proof. We have 4' = (ker Df(() n (-) + W. Given v E kerDf(y) n y', we get 

0= Df(y)v= Df((()v+ kD f(() (y _ ()k-lV 
k>2 

Now let v = v1 + v2 with v1 E W1- and v2 E W~. Then Df(()'Df(()v =v2 and 

-V2 =5kDf (( Dkf(_) k-i 

k>2 

so that 

IIV - Vl jj = JIV2K < (1i Au)2 - 

as in the proof of Lemma 2.b. By Lemma 3.a, the component of v1 in V~ is also 
the component of v in V~, and its norm is bounded by 

d (y',l ') lvIK = dj(V~, Vy)IIvIl < ujjvjjl; 

the last inequality is a consequence of Lemma 4.a, and the equality follows from 
Proposition 3.2. 0L 

Lemma 3.c. If f( 0,(1 )2 U-1+u ? 1andDf(() is onto, then Df(y)jI? 
is onto. 

Proof. By Lemma 3.b, 

d4(kerDf(y) n y,kerDf(() nD4) < 1. 

Thus, by Proposition 4.3 

(ker Df(y) n y') n (ker Df(() n c')' = {O}, 

so that 

dim ker Df(y) n y' < dim ker Df(() n < < dim ker Df() 

and we are done. E O 

Lemma 4.a. d. (VE Vy) < lx - y1 < ux. 

Proof. Let v E Vx be given with v = xAx. With w = xAy we have 

llv -wll = (E llAi(xrz- YO1i)i 

E lli( I I ) 1 1 1 1 1 1 

This gives dx(Vx, Vy) < lIx-yllx, and this last quantity is < ux since -y(f, x) > 1. OI 

Lemma 4.b. Iff()=0 and u~ <1- 2, then 

d(ker Df(y),W <uO(u), with O(u) = 2 u d~~(kerDf(y), ~~~~~ 
-2 (u- 
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Proof. By Lemma 3.a, ker Df(() @ W~ is under the hypothesis an orthogonal 
direct sum decomposition of E. Let v E ker Df(y) and v = v1 + v2, where 
v, E kerDf(() and V2 E W. Df(y)v = 0 implies that Df(y)vl = -Df(y)v2 
and that Df (()tDf (y)vl -Df (()tDf(y)v2. Now we estimate the norms of both 
sides of the equation: 

flDf(()jDf(y)vlII = IlDf(()t(Df(() + ZkD (()(y _ ()k-l)v 
k>2 

< 
((1- U )2 - 1)livi I( 

Df(()tDf(y)v2j = IDf(()t(Df() + kDkf (() (y()k-)V k! 
k>2 

> 
IIV211-(1 -(_ U )2 - 1)llV211K- 

Let usb1(u) =(1 - 2-1; then it follows that 

i(u)l( U)1 -U2i(Ul) 

and that 

d((kerDf(y),W ) < - (uU((U(). 
1ucbi(ucy u~(u) 

It remains to estimate d(-(W-, WY), which we do in the next lemma with q as 
above. 

Lemma 4.c. If f(,) = 0 then 

d( (WC' I Wyl ) < v'2u( 0(u ) . 

Proof. Indeed, 

d( (W( I Wyj ) = d( (Vy G3 (ker Df (y) n y'), w,), 

which by Proposition 4.7 

< Vr2 max(d( (Vy, wC'), d( (ker Df (y) n y', w( ) ) 

and by Lemma 4.b 

< r 
max(u, u 0 (u()) = V'2u( 0(u(). 

Lemma 5. If d( (ker Df(((),WY') < 3 and Df(y)Iy is onto, then 

11 (Df (y) Iyi )tDf (y) II? < 2. 
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Proof. If w, E ker Df (y)' then 

(Df(y)ly )tDf(y)wl = W2, 

where w2 E WY and there is a v E ker Df(y) such that w, + v = W2. Then 

lkerDf(y)W2 = v, and by Proposition 3 and the hypotheses IlvII < 3IIw2 II, so 

11w2112 = II,w112 + IIvI2 
? 

IIW 1w12 + 311W2112 

and IIw2II < 2IIwi II, which was to be proved. E 

Lemma 6. For any x, y E E* let us define c(x,y) = maxi (Ilxilli/llyilli) and 
c(y,x) = maxi (IIyi li/IIxiI i). Then 

1. IlvIly < c(x,y)IlvIIx for any v E E. 
2. IBIly < c(x, y)c(y, X)kIIBIIx for any k-linear operator B: Ek E. 
Moreover when ux < 1 we have 

3. c(x,y) < and c(y,x) < 1 +ux. 
1 -ux 

Proof. Assertions 1 and 2 are easy. To prove 3, notice that 

c(x, y) = max < max < 
i Iyili i 1 - "x -il 1-Ux' 

lixi Iii 
since 

ZIxi - yi Il IIY - xlIx < uX < 1. 

Moreover, 

c(y,x) =max ? < IIYIIX< +IIY-X||X?1+UX. lixilli 

Let x E E* be given such that Df(x) Ix is onto. We use affine a-theory (see 
Shub-Smale [12], Theorem 1.4) to conclude, if a(f, x) < ao, the existence of a zero 
( of f such that the Newton iterates 

XO= X, Xk+1 = Xk - (Df (Xk) IxI )tf (Xk) 

are such that Df(xk) Ix is onto, converge to a zero ( of f, and for all k > 1 

12 k 
_ 1 

llXk+1 - XkIIx < ()2 lxi -xollx- 

With 

E 0(i~ = 1.63284.... 

Here a0 is a universal constant. According to Shub-Smale [9] and [12] we can take 
a0 = (13 - 3vi7@)/4 = 0.15767.... We have the following: 

Lemma 7. Let x E E* be given such that Df(x) Ix is onto and a (f,x) < ao. Let 
us denote y = x, = x - (Df(x) lx )tf(x). Then 

I - xll <_ Olly - xlx = 0oj(f, x), 

I - YIIX < ( -1) IIy - xllx = (a-1)3(f, x). 
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The proof is easy, and is left to the reader. g 

Lemma 8. With the same hypotheses as in Lemma 7, there is a universal constant 
r > 0, approximately equal to 23.78463..., such that u( < ruX. 

Proof. Since f(() = 0 we have V( c kerDf(((), so that (Df(()lC)t = Df(4)t is 
the minimum norm right inverse of Df(4). Thus 

7y(f,() = max(l,sup (Df(()I ()t f(Dk ) 
k1 

) 

k>2. k! 
< max(l,sup l(Df( lx)t -Df k-1 ) 

and by Lemma 6 

< max(l, skup C(X, ()C((, X)k ||(Df(( tD Dkf()|) 
k-1 

Moreover 

||(Df(() Ix k )t Dkf |< 1 (Df(() Ix K)tDf(x) llx (Df(x) Ixw )t Dkf(() 

Let us denote v = lix - (4lxy(f,x). We have by Lemma 7 v < ua(f,x) < uao < 
1 - V2/2, and by Lemma 2 

|(Df (() Ix)tDf (x)llx < 
(1 v V)2 

We also have 

(Df(x)lI) )tD kf(<) |)tD klfX)| r 
k! 

- , (Df (x) I x U~!! 
x- ii 

(k + l)! )k+?111 I I = (f, )k1 
k!l!(1-V)k+l' 

Since by Lemma 6 c(x, <) ? 1/(1 - v) and c((, x) < 1 + v, we obtain 

~y(f,~) ? max((1, sup (((1 v (v) V)k+l - (1 v () 
k>2 1- Pv (')+ / k i ?(v) 

so that, by Lemmas 6 and 7 

u= 1 - YIKx(f, ) ? C(X,1 - 1 ( 

< 1 (a-1) ||x-YJII( 1 + v 2 ' (f, x)< 

with 

a-i (1-ivNj 1 

1-v k-v) C(v) V=QO 

since v < aao. From this expression we are able to deduce a numerical value for 
T. 2 
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Lemma 9. With the same hypotheses as in Lemma 7, there is a universal constant 
0 < a, < ao such that, if a(f, x) < a1, then 

) < 2(1 + oao) f3(f X)2(f, X) I-'J~) - 4'ao) 

We can take a1 = 0.009. 

Proof. We start from the following inequality: 

i3(f, y) = 11(Df(y)lyi )tf(y) Hly < c(x, y) 11(Df(y)lyi )tDf (y) 1 llx 

x jj(Df(Y)Lxi)tDf(x)llx II(Df(x)lxi)tf(y)llx = 1 x 2 x 3 x 4. 

We have 1 < _ by Lemma 6, 3 < (1_uX)2 by Lemma 2 since Df(x)Ix is onto 
_ - UXb(ux)byLma2sneD()wisot 

and ux = ai(f, x) < a, < 1 - V2/2. By Lemmas 5 and 6 we also have 

2 < c((, x) I(Df(y)Iy )tf(y)II < 2(1 + v) < 2(1 + aao) 

as in the proof of Lemma 8. This is accomplished when d (ker Df (C), WYfL) < V3/2 
and Df(y) Iy is onto (Lemma 5). The first inequality is satisfied when uC < 
1 - V-/2 and u(b(u() < V3/2 (Lemma 4.b); Df(y) ly is onto when 

(l1L)2 
- 

1 + u( < 1. Since uc < Tux by Lemma 8, these inequalities are satisfied when 
-ra1 < 1-V/2, Ta10(T}a1) < V43/2 and (1-1- 1+-raT 1 <1. This is accomplished 
with a, = 0.009. Let us now give a bound for 4. We start from 

f (y) = f (x) + DZ f () (y-X)k 
k>l 

Since y = Nf(x) we have f(x) + Df(x)(y - x) = 0, so that 

4 = 11 (Df(x) Ix )tf(y) 11x < E || (Df(x) [l) kf ) IIXl l- XIIl 
k>2 

ux < 1 Hl Y-XIIx. 

Putting these inequalities togother gives the required result. 

Lemma 10. With the same hypotheses as in Lemma 9, 

^1(f, y) < 2 (1 + ?a? ) ao 1 / +? (f x) 

Proof. Similarly to the proof of Lemma 9, 

^y(f,y) = max(l,sup (Df(y)jy)tDk(y) kk! 
I 

To bound this quantity in terms of ^y(f, x) we start from 

IK(Df(y)lyI)tD (y) IY < C(X, Y)c(y,x)k x 2 x 3 x 11(Df(x)l )tD (k)f 
y 

< (1+ ) 2(1 + ao) (__U 2 
_(f X)k+l; 

2(1U 
+ uao ) (1 - u)2-(,x)k1l 
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the last inequality may be proved as in Lemma 8. This gives 

wy(f, 1 y) U< 
2 

2(1 + aao)a( 

and we are done. 

Proof of Theorem 1. We start from xo = x with Df(x)lxL onto and a(f,x) < u = 
1/137. By Lemmas 9 and 10 and since au < a1, we have a(f,y) < Tria(f,X)2, where 

1 + ao 1 + )a 2 

2 
1-ao P(ao) 

We have Tl = 63.03684..., so that 2Tl a(f, x) < 1. We obtain, by induction over k, 

a(f, Xk) < (2 a (f x). 

Using Lemma 9 again, we get 

i3(f, y) < T2a(f, X)/3(f, X) 
with 

T2 = ( )n = 6.00162.... 
4'(ao) 

By induction over k and since 2T2au < 1, we obtain 

||Xk+1 - Xk lXk <- 0(f, Xk) < -2 0(f, x)*- (12 

We now notice that 

dR(Xk+l, Xk) < IIXk+1- XklXk I 

because Xk+1 - Xk E TXkZjP(Ej). The rest of the-proof is easy. O 

2.3. y-theorem. In this section we give a proof of Theorem 2. According to 
Theorem 1, x will be an approximate zero if Df(x)lx is onto and a(f,x) < au. 
Let us denote w = lIx-(IKx.-(f, (). By Lemma 3.c, Df(x) Ix? is onto when - 

1 + w < 1. This is accomplished when w < 0.24512.... Let us now compute a 
bound for a(f, x). We have by Lemma 6 

1 
03(f, x) = II(Df(x)Ix? )tf(x)llx < 1 -I(Df(x)lx, )If(x)ll 

< LII(Df(x)jxi )tDf(()11(11(Df(()K?-L )tf(x) IIK = 1 x 2 x 3. 

By Lemma 2 we get 2 < ( _ 

)2, since w < 1 - x/2/2. Moreover, - 
O(w) 

f(x) = Df(()(x -() + ? f (() (x - 

k>2 

so that 3 < l 411(. This gives 
1-w 

1 (f l -) _ I 
/3(f,x) ? i -(1 



1090 JEAN-PIERRE DEDIEU AND MIKE SHUB 

To get a bound for 7y(f, x) we use an argument similar to Lemma 8, and we obtain 

^1(f,x) < (+ W)2 
(1 - w)2y)(W) (f'W 

Thus 

(f,x) < ((1 W),(W)) 2(f()llx - 4114 

This quantity is < a, when 

7u< au (1 + 
W),O 

)-2 

According to the bound w < 0.24512... and the value au = 1/137 we can take 
au = 0.00005. .., but such a value is pessimistic. A better bound might be obtained 
by a direct proof of this -y-theorem. According to Theorem 1 there is a zero (' of f 
such that the Newton sequence Xk converges to (' and 

12 k _ 1 

dR((i ,Xk) < af (2 M3f ,x). (12 

With k = 1 and by the previous estimation for : we obtain 

dR((', x) < ,( -lix - (11( < 2.86543 . .. llx - (11( < 311x - (11C. 

As has been proved before, we have (Yu)f3(f, x) <x - 4j1. We also have noticed 
that a(f,x) < au, so that, by Theorem 1, 

12 k _ 1 

dR((4',Xk) < a () (f,x) 

for some root (' of f. This inequality also applies with Nf (x) instead of x and 
gives, using Lemma 9, 

dR((', Nf (x)) < oj3(f, y) < C1fl(f, X)2(f, x). 

We now use the estimate ^y(f, x) < c2y(f.x) obtained previously to obtain 

dR(((',Nf(x)) ?Cuy(f () f I-xH- . X 

Proof of Corollary 1. Let us first remark that dR(x, y) < llx - Yllx and say that 
6 lX-yllx < dR(x, y) if we take representatives such that x-y E xl and if dR(x, y) 
is small enough. This property is supposed to be satisfied when 

dR(x, y) < dR(X,Y>)7(f,() < 6bu 

If we take representatives of x and ( satisfying ( - x E (', we obtain 

II( - xIOUy(, ()< 66 < Yu) -5 
so that Theorem 2 gives a Newton's sequence converging to a zero (' of f with 

d 2k f 
1 

dR((/ ,Xk) <a ff (2) (, x) 
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This inequality also applies with Nf (x) instead of x, and gives 

12 k _ 1 

dR((, Xzk+l) <a f (2 (f ,Nf f(x)). 

We now use Lemma 9 to bound i3(f, Nf(x)) in terms of i3(f, x). Then we use the 
estimates of -y(f, x) in terms of -y(f, () and i3(f, x) in terms of lx - 41K obtained in 
the proof of Theorem 2 to obtain 

dR ,Xk+l) < Cl G) (f1 X)2_(f ) ? (1)2 _1(f )I_12 

<C3-u (3 ) 1 ||X - (|1 < (1)2 dR(x - 

if c3 265 ?1 O 

2.4. Newton's method for the evaluation map. In this section we give the 
proofs of Theorems 3 and 4. We first describe Newton's iterate Nev(f, x). In a first 
lemma we study the derivative of the evaluation map. 

Lemma 11. For any (f, x) E N(d) X Cn we have 

Dev(f, x)(f,) = f(x) + Df (x). 

Moreover, Dev(f, x) is always onto. D 

The following representation lemma will be useful later. A proof may be found 
in Blum-Cucker-Shub-Smale [2], Section 14.1. 

Lemma 12. For any f, E 7Hd, and x E Cn we have 

fi (X) = (fi (Z),(Z X) di) I(Z T)di II = IIXIldi 

and fIx f(),(zX) < Il IIIIXIIdj = 
- II 

arid ~~~~~~~~f2i(x) < ||IfiH|H|xII|di o 

Let us denote by f' and xl the vector subspaces in 7(d) and Cn that are 
orthogonal complements of Cf and Cx. In the sequel we suppose that llf H = 
llxll = 1. In such a case, the Hermitian structure 11 11(f,.) coincides with the usual 
product structure on (d) X Cn. Newton's iterate for eval is given by 

Nerv(f, x) = (f, x) - (Dev(f, x)If Ix xI )t f(x). 
In the following lemma we compute this Moore-Penrose inverse. We first have to 
introduce some notations. f(x) is a column vector, Dfi(x) is a row vector with 
entries 'fi (x), 1 < j < n, and Df(x) is the m x n matrix with rows Dfi(x), 
1 < i < m. For any matrix A we denote by A* its adjoint. With these notations, 
the usual scalar product in Cn is given by (x, y) = y*x, and the value at x of the 
derivative Df(x) is also the product Df(x)x of the matrix Df(x) by the column 
vector x. 

Lemma 13. For any ,u E m we have (Dev(f, x)If X i )t p = (,x) with 

j (Z) = ij(Z,X)dj ( ) fj (z), 
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= Df(x)*A - (Df(x)*A,x)x, 

A = (In + Df(x)Df(x)* - f(x)f(x)* - Bf (x)f(x)*B)-1 ,u, 

where Im is the identity matrix and 13 the diagonal matrix with entries di, 1 < i < 
m. 

Proof. We have (f,dx) E ker Dev(f, x) if and only if f(x)+Df(x)xi = 0 or, according 
to Lemma 12, 

(fi(z), (z, x)di) + (x, Dfi(x)*) = 0, 1 < i < ml 

or, in terms of the N(d), scalar product, 

((z), (O, I I I, (z, X)di,** , O)) + (x,Dfi(x) =O, 1 < i < m. 

Thus ker Dev(f, x)' consists in the (m + 1)-tuples 

(A1(Z,X)d l... ,A"(Z,X)dm Df(x)*A), AE em 

In fact (Dev(f, x) fI f ) t involves the orthogonal complement in f' x x1 of 
kerDev(f,x)IfiXXi. This subspace is equal to 

(kerDev(f,x) n (f' x xx))I n (f' xx') 

= (kerDev(f,x)' + (cf x cx)) n (f' x x'). 

Any element in this subspace is equal to some 

(f, x)= (af, + A1 (Z x) 1Xd*. .. afm + Am(z, X)m, ,3x + Df(x)*A) 

with (f, f) = 0 and (x, x) = 0. Consequently 

a=-Z Aifi(x) and /3=-(Df(x)*A,x), 

since I fI = IIxII = 1. Let us now compute 

(Dev(f,x)|f?Xx?)'i = (f,I x. 

We have (f, x) as before and f(x) + Df(x)x = IL, so that 

(Im + Df(x)Df(x)* - f(x)f(x)* - 3f(x)f(x)*13) A = IL, 

using Euler's formula for fi i.e Dfi(x)x = difi(x). The invertibility of this matrix 
is a consequence of the invertibility of the restriction of Dev(f, x) fI fx to the 
orthogonal complement in f' x x1 of ker Dev(f, x)I fIxx. F 

Lemma 14. For any x E Cn with llxll = 1, l1,... ,Xk E Cn, we have 

IDkf (x)(. , ... .,X k) I< di(di - 1) ... (di - k + 1) 11fi |L| *h 11.Xkj 

The proof of this lemma may be found in Blum-Cucker-Shub-Smale [2], Section 
14.1. g 

Lemma 15. 

Dk ev(fi, x) f,X,.**,k k) 

k 
k 

fD f(X)(, ... 
k 

x)+,D ;x(l l**,j,* k 

j=l 

where x;j indicates that x; is missing. 
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Lemma 16. 

ID'ev (fi, x) II < (dki ,fill + ( 1)di 

The proof of this lemma is an easy consequence of Lemmas 14 and 15. 

Lemma 17. When f (x) = 0, then 

11 (Dev(f, x) If xx)t 1 = 1 (I + Df (x)Df (x)*)-l < 1. 

Proof. When f(x) = 0 we have by Lemma 13 

(Dev(f, x) I flXX)t = (f,x) 

with 

fi(Z) = Ai(Z,X)di, X - Df(x)*A and A = (I + Df(x)Df(x)*)-l *. 

Thus 

11 (Dev(f,x)lf xxw)t 112 = max IIAil2 + IlDf(x)*AII2, 

where the maximum is taken for I,ull = 1. This maximum is also equal to 

maxA*(I + Df(x)Df(x)*)A = max ,*(I + Df(x)Df(x)*<l,u 

= 11 (I + Df(x)Df(x)*)l- 11 

This quantity is always less than or equal to 1, since adding to the identity matrix 
a psd matrix increases the eigenvalues. E 

Proof of Theorem 3. For any (f, x) E V we have 

11 (Dev(f, x) If ) t D ev(f, X) < 11 (Dev(f, x)lf X )t 11 11DkeV(f, )11 

By Lemma 17 the first term is bounded by 1, and by Lemma 16 we get 

( (di ,lfill + (di )) D k( i 

NVe now have to take the (k - 1) -th root of this expression and its maximum for 
k > 2. The well known inequality 

(D)k) (D< ) k>2, 

gives the required result. 

Proof of Theorem 4. This theorem is a consequence of Theorem 2, Corollary 1 and 
Theorem 3. 2 
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2.5. Path-following. In this section we give the proof of Theorem 5. We choose 
the subdivision ti, 0 < i < p, such that all the distances dR((tj+,(tj) are equal. 
Then we have 

pdR((ti+?1, (ti) = ZdR((ti+,I (ti) < L( 

with L( the length of the curve t E [0,1] (t in the Riemannian distance 

L = j KlKjtjj(t?dt 

and 4t the derivative with respect to t. Since 

=dt dft and d | < IL (t dft d t dft C ?bL, 

we obtain L( < ,aL, so that 

dR((ti+l i(ti)"Y <~L < - 2 
p 2 

We have to prove that 

dR(Xi, (tj^)t(ftji (tj < 6u 

by Corollary 1. This will be accomplished if 

dR(Xi, (tjY? 2 

We prove this inequality by induction over i. Thle case i = 0 is easy, since (o = xo. 
We have, by Lemma 6, 

dR (Xi, tiO+ I? < dR (Oi+ I I (t, ) + dR(t Xi) < 6U. 

By Corollary 1 this gives 

dR(Xi+l, (ti+,) = dR(Nfi+l (Xi),it+j) < dR(Xit, t+J)/2 < 6u/2, 

and we are done. 

2.6. Newton's method for the generalized eigenvalue problem. In this 
section we first give a precise description of multihomogeneous Newton's iterate for 
the generalized eigenvalue problem (gep); then we compute its condition number 
and we prove Theorem 6. We have introduced previously 

F(A, B): 2 X ?, __ ?,n F(A B)(a&,3,x) = (fA -B)x, 

whose zeros are the eigenpairs of (A,B). Multihomogeneous Newton's iterate is 
equal to 

NF(A,B) (a,) , X) = (a, , x) - DF(A,B) (a, , x)Ilx) 1(d3A - a B)x. 

This iterate is computed in the next proposition 
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Proposition 5. Let (A, B) be a regular matrix pair, (a, ) E ?2 and x E Cn both 
non-zero. If (a,:) is not an eigenvalue of the pair (A, B), then multihomogeneous 
Newton's iterate is given by 

NF(A B) (a O, x) = (a + A d, 3 - A,x -4 

A_ ~~~~(XI,X) A =xx 
((A- aB)-' (eA + /B)x, x)' 

= (OA - aB)-'((3 - A)A - (a + A/)B)x. 

Proof. The subspace (a,3, x)' consists in those couples (6,/,x) E C2 X Cn satis- 
fying (x,x) = 0 and (&,I3) = A(-,a-). Thus (a,3, x)' has dimension n. We also 
have 

DF(A,B) (a,O, x) (, x)= (fA - &B)x + (fA - aB)?. 

To compute Newton's iterate we have to solve the following system: 

(A A-&B)x + (fA-aB)4 = (/3A-aB)x, 

(&, 3) = a(-f,c) and (x,x) = 0. 

Since (a, /) is not an eigenvalue, the matrix (/3A - aB) is nonsingular. Multiplying 
the first equation by (/3A - aB) -1 and then taking the scalar product with x gives 

A((3A - aB)< (dA + O3B)x, x) = (x, x), 

and we are done. 

We now compute the condition number for the gep. According to Definition 4, 
when (a, /, x) is an eigenpair of (A, B) then 

p(A, B, a, O3, x) = IIDF(A,B) (a, /, x) Itx)1 

In Dedieu [3] a similar computation is given, but the condition number of the 
eigenvalue and the condition number for the eigenvector are computed separately. 
We prove here that the condition number for the eigenpair is equal to the maximum 
of 1 and the condition number for the eigenvector. 

Proposition 6. Let (A, B) be a regular matrix pair, (a, /) E ?2 and x E C(E both 
non-zero with 

(OAA-aB)x = 0 and Ax $& 0. 

Suppose that (a, /) is a simple eigenvalue of the pair (A, B), i.e., a simple root of 
the polynomial det(/A - aB). Then 

A(A,B,a, 0,x) = max (1,| (H(AX)I(OA - aB)Ix)11 (Ioj2 + 1/12)1/2) 

with H(Ax) 1 the orthogonal projection over (Ax).'. 

Before proving this proposition we make some comments. 
1. For an eigenpair (a, ,, x) of (A, B) we always have Ax $& 0 or Bx $& 0, since 

the pair (A, B) is regular. When both are nonzero then(Ax)L = (Bx)L, since 
/Ax = aBx. 
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2. ,u(A, B, a, 3, x) is invariant under scaling on both the eigenvector and the 
eigenvalue. It is, in fact, defined on the variety 

V = {(A,B,oa3,x) E xn(C)2 x P(C2) x IP(CTn) : (OA - aB)x = O}. 

This is a consequence of Lemma 1 and the definition of p,. 
3. The condition number is invariant under unitary transformations: 

p1(A, B, (x, 3, x) = ,U(V*AU, V*BU, (x, /, U*x) 

for any unitary matrices U and V. We do not prove this fact here; it is a consequence 
of the definition of ,u, of the chain rule and the unitary invariance of the spectral 
norm for matrices. 

4. The linear operator Il(Ax)I (O/A - aB)J,w is nonsingular if and only if (a, :) 
is a simple eigenvalue of the pair (A, B). See Dedieu [3], Lemma 4.1, for a proof of 
this fact. 

Proof of Proposition 6. By the invariance property under scaling we can suppose 
that oaj2 + 1312 = 1 and llxll = 1. By the unitary invariance property, using the 

Schur decomposition for a matrix pair (see Dedieu [3] or Stewart-Sun [15], Chap. 6, 
Theorem 1.9) we may suppose that x = e1, the first basis vector in Cn, and 

A=(o A) and B= (0 B) 

We have 

DF(A,B) (C(, ,x)(&, /,ix) (fA - &B)x + (3A - aB)x. 

When (&,/3) I (a, ,B) and x I x we can write 

(&,fl)=A(-fl,B) and x= 

so that 

DF(A,B) (aiOi X)( A )i =' ((1 - ABy Od - y 

The condition number is equal to 

|| DF(A,Bs) ((Xx 0 X) I(f (a: x) 1g (of:,) -)X 

Since Ia 2+J/3g2 = 1 and IlxII = 1, the endomorphism norm involved in this definition 
is the usual spectral norm, so that 

p/(A,B,c(,3, x) = max (1, HJ(/A-a3)Bf1 1) . 

To conclude we just notice that 

/3A - B = H(Ax) 1 (OA-aB)Ix- 

We now give an estimate for -y(F(A,B), (X, /, X) when (a, /3) is a simple eigenvalue 

of the pair (A, B). 

Proposition 7. Under the hypothesis above 

_y(F(A,B),C(,3, X) < max (1, 2L(A, B, c,/O, x) (IAl2 ? BAI2)B/2) 
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Proof. We first suppose that Ice2 ?+ 1312 = 1 and llxll = 1, since, by Proposition 2, 
ty is invariant under scaling. We have 

D2F(ce, 0, x) (&, Ij 1, ,)(&2A, 22) = (/2A -&AB)j1 + (131A - B)x2 

so that, when (&l,fli) = X J(-,B), i = 1,2, 

= (A + fB)(A21 + A1x2). 

Since (a, ,B) and x are normalized, we have 

ID F(a,o, x)JJ(.,.) = max I (aA +?3B)(A2x1 ? A1x2) 11 = IlaA + OBI, 

because 

11H2x ? AlX2H ? :A2Hlx21H ? 1 A1 Hx2+ ? (L?jl2 ? (I 1l2)1/2cX2I2 ? jHx2l)/ = 

This gives 

-y(F(A,B), , ,3, x) = max (1,i 2 (DF(v, ,, x) J(,) 
' D2F(a 3, x) 11 (,,x)) 

<max (1, -p(A, B, a, /, x) IlaA + 3BIH) 

< max (1, Ip1(A, B, ce, 3, x) (11A112 + JIB12)1/2)) 

Proof of Theorem 6. We put together Theorem 5, Proposition 6 and Proposition 7 
to obtain the required estimate. O 
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